## Exercise 2.4.3

Solve the eigenvalue problem

$$
\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi
$$

subject to

$$
\phi(0)=\phi(2 \pi) \quad \text { and } \quad \frac{d \phi}{d x}(0)=\frac{d \phi}{d x}(2 \pi) .
$$

## Solution

Suppose first that $\lambda$ is positive: $\lambda=\alpha^{2}$. The ODE becomes

$$
\frac{d^{2} \phi}{d x^{2}}=-\alpha^{2} \phi
$$

The general solution is written in terms of sine and cosine.

$$
\phi(x)=C_{1} \cos \alpha x+C_{2} \sin \alpha x
$$

Take a derivative of it with respect to $x$.

$$
\phi^{\prime}(x)=\alpha\left(-C_{1} \sin \alpha x+C_{2} \cos \alpha x\right)
$$

Apply the boundary conditions to obtain a system of equations involving $C_{1}$ and $C_{2}$.

$$
\begin{gathered}
\phi(0)=C_{1}=C_{1} \cos 2 \pi \alpha+C_{2} \sin 2 \pi \alpha=\phi(2 \pi) \\
\phi^{\prime}(0)=\alpha\left(C_{2}\right)=\alpha\left(-C_{1} \sin 2 \pi \alpha+C_{2} \cos 2 \pi \alpha\right)=\phi^{\prime}(2 \pi) \\
\left\{\begin{array}{l}
C_{1}=C_{1} \cos 2 \pi \alpha+C_{2} \sin 2 \pi \alpha \\
C_{2}=-C_{1} \sin 2 \pi \alpha+C_{2} \cos 2 \pi \alpha
\end{array}\right. \\
\left\{\begin{array}{l}
C_{1}(1-\cos 2 \pi \alpha)=C_{2} \sin 2 \pi \alpha \\
C_{2}(1-\cos 2 \pi \alpha)=-C_{1} \sin 2 \pi \alpha
\end{array}\right.
\end{gathered}
$$

Both equations are satisfied if $\alpha=n$, where $n=1,2, \ldots$. The positive eigenvalues are $\lambda=n^{2}$, and the eigenfunctions associated with them are

$$
\phi(x)=C_{1} \cos \alpha x+C_{2} \sin \alpha x \quad \rightarrow \quad \phi_{n}(x)=C_{1} \cos n x+C_{2} \sin n x .
$$

$n$ only takes on the values it does because negative integers result in redundant values for $\lambda$. Suppose secondly that $\lambda$ is zero: $\lambda=0$. The ODE for $\phi$ becomes

$$
\frac{d^{2} \phi}{d x^{2}}=0 .
$$

Integrate both sides with respect to $x$.

$$
\frac{d \phi}{d x}=C_{3}
$$

Apply the second boundary condition to determine $C_{3}$.

$$
\phi^{\prime}(0)=C_{3}=C_{3}=\phi^{\prime}(2 \pi)
$$

$C_{3}$ remains arbitrary. Integrate both sides of the previous equation with respect to $x$ once more.

$$
\phi(x)=C_{3} x+C_{4}
$$

Apply the first boundary condition.

$$
\phi(0)=C_{4}=2 \pi C_{3}+C_{4}=\phi(2 \pi)
$$

$C_{4}=2 \pi C_{3}+C_{4}$ leads to $C_{3}=0$.

$$
\phi(x)=C_{4} \quad \rightarrow \quad \phi_{0}(x)=1
$$

Because $\phi(x)$ is a nontrivial function, zero is an eigenvalue. Suppose thirdly that $\lambda$ is negative: $\lambda=-\beta^{2}$. The ODE for $\phi$ becomes

$$
\frac{d^{2} \phi}{d x^{2}}=\beta^{2} \phi
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\phi(x)=C_{5} \cosh \beta x+C_{6} \sinh \beta x
$$

Take a derivative of it.

$$
\phi^{\prime}(x)=\beta\left(C_{5} \sinh \beta x+C_{6} \cosh \beta x\right)
$$

Apply the boundary conditions to determine $C_{5}$ and $C_{6}$.

$$
\begin{gathered}
\phi(0)=C_{5}=C_{5} \cosh 2 \pi \beta+C_{6} \sinh 2 \pi \beta=\phi(2 \pi) \\
\phi^{\prime}(0)=\beta\left(C_{6}\right)=\beta\left(C_{5} \sinh 2 \pi \beta+C_{6} \cosh 2 \pi \beta\right)=\phi^{\prime}(2 \pi) \\
\left\{\begin{array}{l}
C_{5}=C_{5} \cosh 2 \pi \beta+C_{6} \sinh 2 \pi \beta \\
C_{6}=C_{5} \sinh 2 \pi \beta+C_{6} \cosh 2 \pi \beta
\end{array}\right. \\
\left\{\begin{array}{l}
C_{5}(1-\cosh 2 \pi \beta)=C_{6} \sinh 2 \pi \beta \\
C_{6}(1-\cosh 2 \pi \beta)=C_{5} \sinh 2 \pi \beta
\end{array}\right.
\end{gathered}
$$

No nonzero value of $\beta$ satisfies these equations, so $C_{5}=0$ and $C_{6}=0$. The trivial solution $\phi(x)=0$ is obtained, which means there are no negative eigenvalues.

